

Introduction and Methodology

Different network	configurations	tested in the	exper

Naming	Geometry	ImageNet	TransferNet	Style loss	Total params	Trainable params
CasMVSNet_UNet	CasMVSNet ^[1]	VGG16	UNet	Gram ^[4]	10.2 M	1.7 M
CasMVSNet_AdaIN	CasMVSNet	VGG19	AdalN ^[3]	IN statistics ^[3]	7.9 M	3.5 M
PatchMatchNet_UNet	PatchMatchNet ^[2]	VGG16	UNet	Gram	9.5 M	1.7 M
PatchMatchNet_AdalN	PatchMatchNet	VGG19	AdalN	IN statistics	7.2 M	3.5 M

Total loss function is a weighted combination of loss terms: $\mathcal{L}_{total} = \lambda_{content} \mathcal{L}_{content} + \lambda_{style} \mathcal{L}_{style} + \lambda_{imgeom} \mathcal{L}_{imgeom}$ $+ \lambda_{volume} \mathcal{L}_{volume} + \lambda_{depth} \mathcal{L}_{depth}$

MuVieCAST: Multi-View Consistent Artistic Style Transfer

Nail Ibrahimli, Julian F. P. Kooij, Liangliang Nan Delft University of Technology

Qualitative Results Novel View Synthesis

AdaIN + AdaIN Input + Input Input + UNet Input + AdalN UNet + UNet UNet backbone performed better than the AdaIN backbone in terms of geometric consistency.

The left column shows the scene samples and style images shared with user study participants. Frames from our results are presented on the top rows, while frames from the **ARF**^[5] method are displayed on the **bottom** rows. The charts indicate the preferences of the 40 participants.

Training Time

Using pretrained backbones accelerates training by solely addressing multi-view image style transfer. The training time for DTU scans with 49 images, a resolution of 640 × 480, a neighbouring view window size of 3, and a batch size of 1 per GPU on *dual RTX 2080 Ti* was measured. Training times for 10 epochs and backbone information are as follows:

Backbone information			1	Iraining time for network		
Modules	Options	Pretrained	Trainable	configurations		
Image	VGG16	ImageNet	No	Network Architecture	Training Time	
learning	VGG19	ImageNet	No		(seconds)	
Geometry	CasMVSNet	DTU	No	CasMVSNet_UNet	174.44	
Learning	PatchMatchNet	DTU	No	CasMVSNet_AdaIN	174.52	
TransferNet	UNet	MS COCO	Yes	PatchMatchNet_UNet	153.03	
	AdalN	MS COCO	Yes	PatchMatchNet_AdaIN	155.00	

[1] Gu, Xiaodong et al. "Cascade cost volume for high-resolution multi-view stereo and stereo matching." CVPR 2020 [2] Wang, Fangjinhua et al. "Patchmatchnet: Learned multi-view patchmatch stereo." CVPR 2021 [3] Gatys, Leon et al. "Image style transfer using convolutional neural networks." CVPR 2016 [4] Huang, Xun et al. "Arbitrary style transfer inreal-time with adaptive instance normalization." ICCV2017 [5] Zhang, Kai et al. "Arf: Artistic radiance fields." ECCV 2022

User Study

References